
Technical Appendix: Specification of the CP2022 Model

The model CP2022 that has been used in 2022 by the Commissie Parameters to generate scenarios
under equivalent measures P and Q is an affine model with stochastic volatility. Affine models
ensure that the value of certain financial contracts can be expressed explicitly in terms of a limited
number of parameters. We refer to the book of Filipovic [5] for an overview of such models and
their properties. The model CP2022 is an extension of the model used in 2019 by the previous
Commissie Parameters, which was based on the KNW model [8] and subsequent modifications and
analysis by Draper [3] and Muns [9]. Other relevant papers include those by Brennan & Xia [2],
Duffie & Kan [4], Singor et. al [10], Schöbel & Zhu [11] and van Haastrecht & Pelsser [12].

1 State Equations

The economic model CP2022 is based on a stochastic process X:

Xt =
[
Xs
t

Xo
t

]
, Xs

t =
[
vt
rt
πt

]
, Xo

t =
[

ln(St)
ln(Πt)

]
, (1)

which consists of a state vector process Xs, which contains a short rate process r, an expected
(European) inflation rate process π and a stochastic variance process v (see Heston [6]) which equals
the square of the stochastic volatility process. The two additional variables are the logarithm of
a stock price index S and (European) consumer price index Π, which together form Xo. Dutch
consumer prices will be modeled separately later in this Appendix.

The dynamics of Xs is described by

dXs
t =

[
Kvv 0 0
Kvr Krr Kπr
Kvπ Krπ Kππ

]
(

[
Ev∞
Er∞
Eπ∞

]
−Xs

t ) dt +
[
ω 0 0 0 0
σvr σr1 σr2 0 0
σvπ σπ1 σπ2 0 0

] [
vt 01×4

04×1 I4+vtΓ1

] 1
2

dW P
t ,

=: K(EXs
∞ −Xs

t ) dt + Σrπ(Γ0 + (Xs
t )1Γ)

1
2 dW P

t , (2)

where A
1
2 denotes1 the symmetric matrix H satisfying HH ′ = H2 = A, W P

t is a 5-dimensional
standard Brownian Motion (with independent components) and

EXs
∞ =

[
Ev∞
Er∞
Eπ∞

]
, K =

[
Kvv 0 0
Kvr Krr Kπr
Kvπ Krπ Kππ

]
, Γ =

[
1 01×4

04×1 Γ1

]
, Γ0 =

[
0 01×4

04×1 I4

]
, Σrπ =

[
ω 0 0 0 0
σvr σr1 σr2 0 0
σvπ σπ1 σπ2 0 0

]
.

(3)
We impose that (i) ω ≥ 0, (ii) K and Γ1 have real positive eigenvalues and (iii) Γ1 has zero values
outside its diagonal2. To ensure that v0 > 0 implies P(vt > 0) = 1 we also impose the Feller
condition KvvEv∞ − 1

2ω
2 ≥ 0.

The logarithm of indices for stock prices and (European) consumer prices in Xo satisfy

dXo
t =

[ rt+ηS
πt+ηΠ

]
dt − 1

2D
([ σ′S

σ′Π

] [
vt 01×4

04×1 I4+vtΓ1

] [
σ′S
σ′Π

]′)
dt +

[
σ′S
σ′Π

] [
vt 01×4

04×1 I4+vtΓ1

] 1
2

dW P
t ,

=: (µo +KoXs
t )dt + ΣSΠ(Γ0 + (Xs

t )1Γ)
1
2 dW P

t , (4)

with ηS and ηΠ in R, and σS and σΠ both vectors in R5. We use the symbol D(A) for the diagonal
of a matrix A, expressed as a column vector, and define

µo = [ ηSηΠ ]− 1
2D(ΣSΠΓ0ΣSΠ′), ΣSΠ =

[
σ′S
σ′Π

]
, (5)

Ko = [ 0 1 0
0 0 1 ]− 1

2D(ΣSΠ ΓΣSΠ′)[ 1 0 0 ]. (6)

We impose that (σΠ)4 = 0; this and other zero values in the specification of matrices and vectors
have been chosen in order to make the model specification unique.

1We choose a symmetric form for H to facilitate interpretation; one can also use a Cholesky representation.
2We have not chosen for a further extension of the previous model in which Γ1 can have off-diagonal elements

equal to zero, to keep the model parsimonious.
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2 Market prices of risk

Market prices of risk which characterize the transformation from P to Q are affine in Xs and
defined by a 5× 3 matrix Λ1 and a 5-dimensional vector λ0:

dW P
t = dWQ

t − ((Γ0 + (Xs
t )1Γ)

1
2 )−1 (λ0 + Λ1X

s
t ) dt, (7)

which should satisfy the constraints:

ΣSΠλ0 = [ ηSηΠ ] , (8)

ΣSΠΛ1 = 02×3. (9)

We note that the risk premium on inflation risk ηΠ is zero in the original KNW paper; this
constraint has not been incorporated in CP2022.

We define
M = K + ΣrπΛ1 (10)

for the riskneutral version of K and impose (Λ1)1,2 = (Λ1)1,3 = 0 to ensure that K and M have
the same zero elements imposed. The eigenvalues of M are required to be real and positive and
we impose the Feller condition MvvEQv∞ − 1

2ω
2 ≥ 0, to ensure that Q(vt > 0) = 1.

To create a riskneutral version of EXs
∞, i.e. EQXs

∞, in

dXs
t = M

(
EQXs

∞ −Xs
t

)
dt + Σrπ(Γ0 + (Xs

t )1Γ)
1
2 dWQ

t , (11)

dXo
t = (µo − [ ηSηΠ ] +KoXs

t ) dt + ΣSΠ(Γ0 + (Xs
t )1Γ)

1
2 dWQ

t . (12)

we must choose
Σrπλ0 = −M EQXs

∞ +K EXs
∞. (13)

Choosing K, M , EXs
∞ and EQXs

∞ fixes λ0 and Λ1 using (8), (9), (10) and (13).

3 Term structures of interest

The yield of a nominal zero coupon bond at time t with time to maturity τ (i.e. with a payoff of
one euro at time t+ τ) satisfies

yt(τ) = −τ−1 lnEQ
t e
−
∫ t+τ
t

rudu = −τ−1 lnEQ
t e

[0 −1 0]
∫ t+τ
t

Xs
udu

= −τ−1(φ(t, t+ τ) + Ψ(t, t+ τ)′Xs
t ), (14)

for deterministic functions φ and Ψ that solve the Riccati equations given in section 10, if we
substitute the following input parameters in those equations to characterize the dynamics under
Q:

L = M, ζ(t) = MEQXs
∞, Σ = Σrπ, u′ = [0 0 0], v′ = [0 −1 0], (15)

with G0 = Γ0, G1 = Γ, and Gi the zero matrix with the same dimensions as G0 for i > 1.

Real yields will satisfy

yRt (τ) = −τ−1 lnEQ
t e
−
∫ t+τ
t

rudu+(ln Πt+τ−ln Πt) = −τ−1 lnEQ
t e
∫ t+τ
t

[0 −1 0]Xs
udu+[0 1](Xo

t+τ−X
o
t )

= −τ−1( φR(t, t+ τ) + Ψs
R(t, t+ τ)′Xs

t + (Ψo
R(t, t+ τ)′ − [0 1])Xo

t ), (16)

for deterministic functions φR, Ψs
R and Ψo

R that solve the riskneutral version of the Riccati equa-
tions in section 10 for the process X in (1) which combines Xs and Xo:

L =

[
M 03×2

−K0 02×2

]
, ζ(t) =

[
MEQXs

∞
µo − [ ηSηΠ ]

]
, Σ =

[
Σrπ

ΣSΠ

]
, (17)
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with the same G0, G1, and Gi (for i > 1) as above and

u′ = [0 0 0 0 1], v′ = [0 −1 0 0 0]. (18)

Since the last two rows of L′ and v are zero and G4 and G5 are zero matrices, we see from (78)
in section 10 that Ψo

R(t, t + τ)′ = [0 1] so the term involving Xo
t in (16) disappears and we may

remove the superscript in Ψs
R:

yRt (τ) = −τ−1( φR(t, t+ τ) + ΨR(t, t+ τ)′Xs
t ). (19)

In our model specification we can write, by a slight abuse of notation, that Ψ(t, t+ τ) = Ψ(τ) and
ΨR(t, t+ τ) = ΨR(τ) and as long as ζ(t) is constant we can also write φR(t, t+ τ) = φR(τ).

4 Historical observations and calibration under P

We assume that the price indices St, Πt, the squared volatility vt and the yields of one nominal
and one real bond, with maturities τ∗N and τ∗R respectively, can be observed without measurement
error [3, 7]. This implies that we can indirectly observe the state (Xs

t ,X
o
t ) = (vt, rt, πt, lnSt, ln Πt)

since

Xs,obs
t =

[
1 0 0

Ψ(t,t+τ∗N )′

ΨR(t,t+τR∗)′

]−1
[

vobs
t

−τ∗Nyt(τ
∗
N )obs−φ(t,t+τ∗N )

−τ∗Ryt(τ
∗
R)obs−φ(t,t+τ∗R)

]
. (20)

For some other maturities we assume that nominal and real yields can be observed with measure-
ment errors, and that these have been collected in vector processes Yobs

t and YR,obs
t of length ny

and nRy respectively. The corresponding maturity vectors are τ and τR, and the standard devi-
ations of measurement equation errors together form a vector h. We can then characterize the
measurement equation errors εyt by

Yobs
t (τ1)

...
Yobs
t (τny )

YR,obs
t (τR1 )

...

YR,obs
t (τRnRy

)


=



yt(τ1)
...

yt(τny )
yRt (τR1 )

...
yRt (τRnRy

)


+ εyt , εyt ∼ N(0(ny+nRy )×1, Σy), iid (21)

with Σy ∈ R(ny+nRy )×(ny+nRy ) a matrix with zero elements apart from the diagonal, which contains
values h2

i for 1 ≤ i ≤ ny+nRy . Model error processes εsot for given parameters can be approximated
by (see (2) and (4)):[

Xs,obs
t+∆t −Xs,obs

t

Xo,obs
t+∆t −Xo,obs

t

]
=

[
K(EXs

∞ −Xs,obs
t )

µo +KoXs,obs
t

]
∆t+ εsot , (22)

with

εsot ∼ N(05×1,Σ
so
t ) iid, (Σso

t )
1
2 =

[
Σrπ

ΣSΠ

]
(Γ0 + (Xs,obs

t )1Γ)
1
2

√
∆t. (23)

The processes εso are assumed to be independent from εy. This means that for the log-likelihood
optimization under P we need to maximize3

lnLP = − 1
2

n∑
t=1

(
εyt
′
(Σy)−1εyt + εsot

′(Σso
t )−1εsot + ln det(Σy) + ln det(Σso

t )
)

+ c (24)

3Note that we use an equal number of εy and εso values. We have one observation more for the εy-values (since
these do not involve taking differences), but we do not use the first value of εy .
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over parameters Θ = (EXs
∞,K,Γ1,Σ

rπ,ΣSΠ, ηS , ηΠ, h,EQXs
∞,M), with c a constant that does not

need to be included in the optimization. The last two parameters enter the likelihood optimization
through the functions yt and yRt since the Riccati equations that they solve depend on these
riskneutral parameters. For the calibration of CP2022 we use {τ1, ..τ5} = {1, 5, 10, 20, 30} and
τ∗N = 15, and {τR1 , ..τR5 } = {1, 5, 15, 20, 30} and τ∗R = 10.

5 Market data and calibration under P and Q

To jointly estimate model parameters for the dynamics under P and Q, we optimize the goal
function lnLP(Θ) defined above under extra constraints that are based on observed market data at
the time of calibration t0. These concern the squared relative difference between implied volatilities
generated by model parameters and observed implied volatilities of financial derivatives at the time
of calibration. We therefore impose

eeq(Θ)2 ≤ (1.50%)2, eint(Θ)2 ≤ (0.15%)2, einfl(Θ)2 ≤ (0.50%)2,

with

eclass(Θ)2 = 1
nclass

nclass∑
k=1

(
pclass,observed
k − pclass,model

k (Θ)

0class
k

)2

, (25)

for class ∈ {eq, int, infl}. In this expression, pclass,observed
k denotes the observed market price of the

k-th instrument in one of the three derivative classes (equity derivatives, interest rate derivatives

and inflation derivatives), pclass,model
k (Θ) is the corresponding price implied by the model for a

choice of parameters Θ and 0class
k is the vega of the k-th instrument. Prices are determined using

simulations under Q that will be specified in section 9 of this Appendix. We give closed-form
expressions for the vega values in section 12.

By dividing the difference in prices by the corresponding vegas, we approximate differences in
implied volatilities. By squaring these, we obtain an approximation of the instruments’ relative
quadratic error in terms of implied volatilities.

6 Exact fitting of the term structure

Let t0 denote the time of calibration for the model. To fit the term structure we use a market price
of risk which is assumed to be a constant λ0 at all times t < t0 for the calibration of historical
asset prices, but assumed to be time-varying4 for all future times t ≥ t0.

In simulations we use monthly time steps ∆ = 1
12 so we use monthly nominal and real yields

yobs
i∆ (t0) and yR,obs

i∆ (t0) to fit the curve. We have nominal bond observations for yearly maturi-
ties {1, 2, 3, ..., 50} and real bond observations for maturities {1, 2, ..., 9, 10, 12, 15, 20, 25, 30, 40, 50}.
Where needed, we use piecewise linear interpolation of the function τ → ln pt0(τ) to obtain inter-
mediate values between observations. Since this function takes the value 0 for τ = 0 this allows
extrapolation for maturities before the maturity of one year as well5. We extrapolate for maturi-
ties above maturity 50 by making the yearly forward rates after that maturity equal to the yearly
forward rate between maturities 30 and 50; we do this both for the nominal and the real curve.

We define6

λ̃0(t) = λ0 +

[
Σrπ

ΣSΠ

]−1

[0 f(t) 0 0 fR(t)]′1{t≥t0}, (26)

4Note that we do not incorporate the fact that λ0 becomes time-varying after the calibration time t0 when
determining the historical bond prices that are used in the calibration.

5The term structures that we fit are characterized by piecewise constant forward rates. The shift functions f
and fR that we define below will be smoother when term structures with smoother forward rates are used in the
calibration.

6We remark that the restriction (Σλ0)4 = ηs in (8) and our choice of λ̃0(t) ensure that (Σλ̃0(t))4 = ηs as well.

Technical Appendix, 4



with f(t) and fR(t0 + τ) equal to constants fi and fRi for τ ∈ [i∆, (i + 1)∆[ so f(t0 + τ) =∑∞
i=0 fi1{τ∈[i∆, (i+1)∆[} and a similar equation holds for fR(t).

After we replace λ0 in (7) by λ̃0(t), we can compare the dynamics of the state variables Xt generated
by the constant market price of risk λ0 (i.e. the case f = fR ≡ 0) and the dynamics for the new
state process X̃t generated by the time-varying market price of risk λ̃0(t) :

dXs
t = M

(
EQXs

∞ −Xs
t

)
dt + Σrπ(Γ0 + (Xs

t )1Γ)
1
2 dWQ

t , (27)

dX̃s
t = M

(
EQXs

∞ − X̃s
t

)
dt + Σrπ(Γ0 + (X̃s

t )1Γ)
1
2 dWQ

t − [0 1 0]′f(t)1{t≥t0} dt, (28)

and

dXo
t = (µo − [ ηSηΠ ] +KoXs

t ) dt + ΣSΠ(Γ0 + (Xs
t )1Γ)

1
2 dWQ

t , (29)

dX̃o
t = (µo − [ ηSηΠ ] +KoX̃s

t ) dt + ΣSΠ(Γ0 + (X̃s
t )1Γ)

1
2 dWQ

t − [0 1]′fR(t)1{t≥t0} dt. (30)

We use the notation pt0(τ) and p̃t0(τ) for nominal bond prices generated by the market prices of
risk λ0 and λ̃0(t) respectively, and pRt0(τ) and p̃Rt0(τ) for the corresponding real bond prices.

We may analyze the effect of the change in the market price of risk using the Riccati equations (78)-
(79) in section 10. From those equations and (14)-(15) we conclude that the transformation from
λ0 to λ̃0(t) leaves Ψ unchanged: Ψ̃uv(t, T ) = Ψuv(t, T ) = Ψ(T −t) and that ζ̃(t) = ζ(t)−f(t)[0 1 0]′

for t ≥ t0, so

ln
p̃t0(τ)

pt0(τ)
= φ̃(t0, t0 + τ)− φ(t0, t0 + τ) = −

∫ t0+τ

t0

Ψuv(s, t0 + τ)′f(s)[0 1 0]′ds

∂τ ln
p̃t0(τ)

pt0(τ)
= −∂τ

∫ t0+τ

t0

Ψ(t0 + τ − s)2f(s)ds = −
∫ t0+τ

t0

Ψ̇(t0 + τ − s)2f(s)ds (31)

since Ψ(0)2 = 0. Using an approximation which assumes that τ → ln pt0(τ) is linear for τ in
[t0 + i∆, t0 + (i+ 1)∆], and since f(t) = fi on this interval, we find

Ei := ∆−1 ln
p̃t0((i+ 1)∆)/p̃t0(i∆)

pt0((i+ 1)∆)/pt0(i∆)
= −

i∑
j=0

∫ t0+(j+1)∆

t0+j∆

Ψ̇(t0 + (i+ 1)∆− s)2f(s)ds (32)

=

i∑
j=0

fj ( Ψ((i− j)∆)−Ψ((i+ 1− j)∆) )2 (33)

which can be used to find the the values of fi recursively: f0 = −E0/Ψ(∆)2 and for i > 0

fi =
−Ei

Ψ(∆)2
+

i−1∑
j=0

fj
Ψ((i− j)∆)2 −Ψ((i+ 1− j)∆)2

Ψ(∆)2
. (34)

We can then fit the real term structure in a second step using (26). Since Ψ̃R
uv(t, T ) = ΨR

uv(t, T ) =
ΨR(T − t) we can use, remembering that ΨR

5 ≡ 1,

ln
p̃Rt0(τ)

pRt0(τ)
= φ̃R(t0, t0 + τ)− φR(t0, t0 + τ) = −

∫ t0+τ

t0

ΨR
uv(s, t0 + τ)′[ 0 f(s) 0 0 fR(s)]′ds

∂τ ln
p̃Rt0(τ)

pRt0(τ)
= −

∫ t0+τ

t0

Ψ̇R(t0 + τ − s)2f(s) ds− fR(t0 + τ) (35)

so we now find in analogy to the nominal case

ERi := ∆−1 ln
p̃Rt0((i+ 1)∆)/p̃Rt0(i∆)

pRt0((i+ 1)∆)/pRt0(i∆)
(36)

= −fRi +

i∑
j=0

fj ( ΨR((i− j)∆)−ΨR((i+ 1− j)∆) )2 (37)
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which can be used to find the values of fRi .
When we need to use future (stochastic) discount rates as defined in equations (62)-(63) of subsec-
tion 9.3, we can use the following trapezoidal approximations for i2 ≥ i1 which are based on (31)
and (35):

φ̃(t0 + i1∆, t0 + i2∆)− φ(t0 + i1∆, t0 + i2∆) (38)

=

∫ t0+i2∆

t0+i1∆

Ψ(t0 + i2∆− s)′(−f(s)e2)ds =

i2−1∑
j=i1

∫ t0+(j+1)∆

t0+j∆

Ψ(t0 + i2∆− s)′ds (−fje2)

≈ ∆

i2−1∑
j=i1

(
Ψ((i2 − j)∆) + Ψ((i2 − j − 1)∆)

2
)′(−fje2) (39)

with e2 = [0 1 0]′. Likewise

φ̃R(t0 + i1∆, t0 + i2∆)− φR(t0 + i1∆, t0 + i2∆) (40)

≈ ∆

i2−1∑
j=i1

(
ΨR((i2 − j)∆) + ΨR((i2 − j − 1)∆)

2
)′(−fje2 − fRj e5),

with e2 = [0 1 0 0 0]′ and e5 = [0 0 0 0 1]′.

7 Constraints

Imposed constraints include the long term average logarithmic annual rate of return on the stock
index S and price index Π and the ultimate forward rate7:

lim
t→∞

EP(lnSt+1 − lnSt) = EPr∞ + ηS − 1
2σ
′
S(Γ0 + EP(Xs

∞)1Γ)σS = ln(1 + 0.052) (41)

lim
t→∞

EP(ln Πt+1 − ln Πt) = EPπ∞ + ηΠ − 1
2σ
′
Π(Γ0 + EP(Xs

∞)1Γ)σΠ = ln(1 + 0.020) (42)

lim
τ→∞

yt(τ) = lim
τ→∞

−φ(t, t+ τ)/τ = UFR (43)

with the UFR equal to ft0(30, 50), the nominal forward rate between maturities 30 and 50 year at
the time t0 of calibration, i.e.

UFR = ft0(30, 50) = ln

((
p(t0,t0+30)
p(t0,t0+50)

)1/20
)

=
50yt0 (50)−30yt0 (30)

20 = yt0(30) + 5
2 (yt0(50)− yt0(30)).

The limit which determines the nominal UFR equals, for any t ≤ t0,

lim
τ→∞

yt(τ) = −Ψ∞
′ (MEQXs

∞ + 1
2ΣrπΓ0(Σrπ)′Ψ∞ ), (44)

if the vector Ψ∞ ∈ R3 solves the following equation, which follows from equations (15) and (78):

− 1
2Ψ∞

′ΣrπΓ(Σrπ)′Ψ∞1i=1 + (M ′Ψ∞)i + 1i=2 = 0 (i = 1..3). (45)

We also include a constraint on the expected nominal and real rates 60 years from now for maturity
10 years in equilibrium (i.e. assuming that the state Xs has converged to its expectation in the
long term under P):

−1
10

(
φ̃(60, 70) + Ψ(10)′EP[Xs

∞]
)

= ln(1 + 0.020), (46)

−1
10

(
φ̃R(60, 70) + Ψ(10)′REP[Xs

∞]
)

= ln(1 + 0.000). (47)

7Note that the constraint in (43) concerns riskneutral dynamics for asset prices in the past, for which a constant
market price of risk λ0 was assumed.
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8 Dynamics of the Dutch Price Index

The consumer price index Πt that we calibrate in our model concerns the Eurozone Harmonised
Index of Consumer Prices (HICP-EU) while Dutch pension funds usually base their decisions on
the Dutch Consumer Price Index (CPI-NL) which we indicate by ΠNL

t . Statistics Netherlands
(CBS) publishes historical observations for this index, ΠNL,obs

y,m , per month m in year y. Average
inflation over the yearly period [y − 1, y[ (i.e. calendar year y − 1) is approximately8 the average
over the 12 months in that period

INL
y ≈

12∑
m=1

ΠNL,obs
y,m −ΠNL,obs

y−1,m

ΠNL,obs
y−1,m

. (48)

Note this value can only be observed after year y has been completed.
The Netherlands Bureau for Economic Policy Analysis (CPB) publishes forecasts of INL

y for future
calendar years y (or the average over multiple years y in the future). We use this CPI-NL inflation
estimate for a future calendar year for all time periods during that year.

For the scenario generator we then assume that inflation in CPI-NL terms over a time interval ∆t,
ΠNL
t+∆t/Π

NL
t , equals the inflation in HICP-EU terms, i.e. Πt+∆t/Πt, plus a time-varying spread.

The spread is chosen to make the expected values of year-on-year inflation (under P, in logarithmic
terms) match the predicted values:

EP[ln(ΠNL
t+∆t/Π

NL
t )] = ln(1 + INL

btc+1) ∆t, (49)

with btc the smallest natural number below or equal to t.

At the time of calibration t0 = 2022 1
2 , the following estimates were available9:

INL
2023 INL

2024 INL
2025

1
5

∑2030
t=2026 I

NL
t

0.024 0.024 0.025 0.020

We use the first three CPB estimates for individual years, and for t = 2026 up to (and including)
t = 2029 we use the average value of 0.020 for each one of those years. For later years, we substitute
the equilibrium value of 0.020 chosen by the Commissie Parameters. For the current estimates this
means that INL

t = 0.020 for t ≥ 2026. Since our simulations start in 2022.5, the value of INL
btc+1

will equal 2.4% for the first 6 months, 2.4% for the 12 months after that, 2.5% for the 12 months
after that, and 2.0% from then on.

9 Simulation

After the parameters have been estimated the continuous time dynamics under P and Q for t ≥ t0:

d
[
Xs
t

Xo
t

]
(2),(4)

=
[
K(EXs

∞−X
s
t )

µo+KoXs
t

]
dt +

[
Σrπ

ΣSΠ

]
(Γ0 + (Xs

t )1Γ)
1
2 dW P

t ,

(7)
=

[
K(EXs

∞−X
s
t )

µo+KoXs
t

]
dt +[

Σrπ

ΣSΠ

]
(Γ0 + (Xs

t )1Γ)
1
2

(
dWQ

t − ((Γ0 + (Xs
t )1Γ)

1
2 )−1

(
λ̃0(t) + Λ1X

s
t

)
dt
)
,

(10)−(13)
=

(26)−(30)

 M(EQXs
∞−X

s
t )−

[
0
f(t)

0

]
µo+KoXs

t−
[

ηS+0

ηΠ+fR(t)

]
 dt +

[
Σrπ

ΣSΠ

]
(Γ0 + (Xs

t )1Γ)
1
2 dWQ

t (50)

can be used to define discrete simulation schemes under P and Q.

8In fact, the individual months may not be completely uniformly weighted. But that effect turns out to have
been negligible in the last few years.

9Source: CPB Raming maart 2022 inclusief Actualisatie Verkenning Middellange Termijn.
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9.1 Simulation under P
For a fixed t0 we simulate N paths for scenarios

{ (Xs,j
t0+i∆t, X

o,j
t0+i∆t, R

j
t0+i∆t) = (vjt0+i∆t, r

j
t0+i∆t, π

j
t0+i∆t, lnSjt0+i∆t, ln Πj

t0+i∆t, R
j
t0+i∆t) }

j=1...N
i=0...n

each containing n time steps of length ∆t = n−1(Tmax − t0). Each path starts in known values
at time t0. To simulate a timestep at a time t = t0 + i∆t (i = 0 . . . n) we first use Andersen’s
exact simulation scheme with martingale correction [1] for the Heston model10 to obtain new
values for the v-process, based on iid uniformly distributed samples U jt . We then determine the
corresponding, approximately Gaussian, increments ηjt

vjt+∆t = fAndersen(vjt , U
j
t ), ηjt = ω−1(vjt∆t)

− 1
2 (vjt+∆t − v

j
t −Kvv(EPv∞ − vjt )∆t). (51)

For the remaining state variables we take
rjt+∆t − r

j
t

πjt+∆t − π
j
t

ln(Sjt+∆t/S
j
t )

ln(Πj
t+∆t/Π

j
t )

 = [04×1 I4]

([
K(EXs

∞ −Xs,j
t )

µo +KoXs,j
t

]
∆t + (Σso,j

t )
1
2

[
ηjt
ξjt

])
, (52)

with

ξjt ∼ N(04×1, I4) iid, (Σso,j
t )

1
2 =

[
Σrπ

ΣSΠ

]
(Γ0 + vjtΓ)

1
2

√
∆t. (53)

The integral over the short rate can be updated using Rjt+∆t−R
j
t = rjt∆t and the Dutch consumer

price index increment follows from (49):

ln(ΠNL, j
t+∆t/Π

NL, j
t ) = ln(Πj

t+∆t/Π
j
t ) +Hj

t (54)

Hj
t = − 1

N

N∑
j=1

ln(Πj
t+∆t/Π

j
t ) + ln(1 + INL

btc+1) ∆t. (55)

9.2 Simulation under Q
Analogously, we can simulate N paths for scenarios under Q:

{ (Xs,j
t0+i∆t, X

o,j
t0+i∆t, R

j
t0+i∆t) = (vjt0+i∆t, r

j
t0+i∆t, π

j
t0+i∆t, lnSjt0+i∆t, ln Πj

t0+i∆t, R
j
t0+i∆t) }

j=1...N
i=0...n

with the same time steps ∆t. Again, we we first use Andersen’s exact simulation scheme with
martingale correction for the Heston model (but this time under Q) to obtain new values for the
v-process, based on iid uniformly distributed samples U jt and we determine the corresponding
(approximately) Gaussian increments ηjt

vjt+∆t = fAndersen(vjt , U
j
t ), ηjt = ω−1(vjt∆t)

− 1
2 (vjt+∆t − v

j
t −Mvv(EQv∞ − vjt )∆t). (56)

We take Rjt+∆t −R
j
t = rjt∆t and

rjt+∆t − r
j
t

πjt+∆t − π
j
t

ln(Sjt+∆t/S
j
t )

ln(Πj
t+∆t/Π

j
t )

 = [04×1 I4]

 M(EQXs
∞ −Xs,j

t )−
[

0
f(t)

0

]
µo −

[
ηS+0

ηΠ+fR(t)

]
+KoXs,j

t

∆t+ (Σso,j
t )

1
2

[
ηjt
ξjt

] (57)

10An implementation can be found in the file MC QE m on the Matlab File Exchange site
nl.mathworks.com/matlabcentral/fileexchange/37618-monte-carlo-simulation-and-derivatives-pricing.
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with

ξjt ∼ N(04×1, I4) iid, (Σso,j
t )

1
2 =

[
Σrπ

ΣSΠ

]
(Γ0 + vjtΓ)

1
2

√
∆t, (58)

and

ln(ΠNL, j
t+∆t/Π

NL, j
t ) = ln(Πj

t+∆t/Π
j
t ) +Hj

t (59)

with Hj
t as defined in (55), i.e. based on the P-scenario’s.

9.3 Valuation of derivatives using simulation under Q
We can use the simulated paths to approximate the prices of European call options on the stock
index, payer swaptions, zero coupon inflation caps and floors and year-on-year inflation caps and
floors that are needed for the calibration. We define nominal and real discount rates at later times
T ≥ t0

D(T, T + τ) = EQ
T [e−

∫ T+τ
T

rudu] = eφ(T,T+τ)+Ψ(τ)′Xs
T , (60)

DR(T, T + τ) = EQ
T [e−

∫ T+τ
T

ruduΠT+τ

ΠT
] = eφR(T,T+τ)+ΨR(τ)′Xs

T , (61)

and their simulated equivalents

D̄(T, T + τ,Xs,j
T ) = eφ(T,T+τ)+Ψ(τ)′Xs,j

T , (62)

D̄R(T, T + τ,Xs,j
T ). = eφR(T,T+τ)+ΨR(τ)′Xs,j

T . (63)

Derivative prices can then be approximated as follows:

Ct0(T,K) = EQ
t0 [e
−
∫ T
t0
rudu(ST −K)+] (64)

≈ 1

N

N∑
j=1

(e−R
j
T (elnSjT −K)+), (65)

SWt0(Ta, Tb,K) = EQ
t0 [e
−
∫ Ta
t0

rudu(1−D(Ta, Tb)−K
Tb∑

Tk=Ta+1

D(Ta, Tk))+] (66)

≈ 1

N

N∑
j=1

e−R
j
Ta ( 1− D̄(Ta, Tb,X

s,j
Ta

)−K
Tb∑

Tk=Ta+1

D̄(Ta, Tk,X
s,j
Ta

) )+ (67)

YICt0(T,K) =

T∑
Tk=t0+1

EQ
t0 [e−

∫ Tk
t0

rudu(
ΠTk−ΠTk−1

ΠTk−1
−K)+] (68)

≈ 1

N

N∑
j=1

T∑
Tk=t0+1

e
−RjTk (e

ln ΠjTk
−ln ΠjTk−1 − 1−K)+, (69)

YIFt0(T,K) =

T∑
Tk=t0+1

EQ
t0 [e−

∫ Tk
t0

rudu(K − ΠTk−ΠTk−1

ΠTk−1
)+] (70)

≈ 1

N

N∑
j=1

T∑
Tk=t0+1

e
−RjTk (K + 1− eln ΠjTk

−ln ΠjTk−1)+, (71)
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ICt0(T,K) = EQ
t0 [e
−
∫ T
t0
rudu( ΠT

Πt0
− (1 +K)T )+] (72)

≈ 1

N

N∑
j=1

e−R
j
T (eln ΠjT−ln Πt0 − (1 +K)T )+, (73)

IFt0(T,K) = EQ
t0 [e
−
∫ T
t0
rudu((1 +K)T − ΠT

Πt0
)+] (74)

≈ 1

N

N∑
j=1

e−R
j
T ((1 +K)T − eln ΠjT−ln Πt0 )+. (75)

The implied volatilities and vega values which are needed to specify the goal function in the
calibration can be found in the Appendix.
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10 Supplement A
Fourier transform in time-inhomogeneous affine models

If a process X satisfies

dXt =
(
ζ(t)− LXt

)
dt+ Σ

(
G0 +

∑
i

GiX
i
t

) 1
2 dWt (76)

with W a standard Brownian Motion (under any of the two measure we may wish to consider: P
or Q), then we have for all t ≤ T and t ≤ T1 ≤ T2

Eteu
′XT+v′

∫ T
t
Xsds = eφuv(t,T )+Ψuv(t,T )′Xt , (77)

if11

∂tΨuv(t, T )i = − 1
2Ψuv(t, T )′ΣGiΣ

′Ψuv(t, T ) + (L′Ψuv(t, T ))i − vi, Ψuv(T, T ) = u (78)

φuv(t, T ) =

∫ T

t

( Ψuv(s, T )′ζ(s) + 1
2Ψuv(s, T )′ΣG0Σ′Ψuv(s, T ) )ds. (79)

To check that these Riccati equations are the correct ones, we write

Zt = Eteu
′XT+v′

∫ T
0
Xsds = eφuv(t,T )+Ψuv(t,T )′Xt+v

′ ∫ t
0
Xsds (80)

and notice that Z is a martingale if a Novikov-style moment condition is satisfied. Applying Itô’s
lemma to the righthand side gives, using obvious abbreviations

d(lnZt) = (∂tφuv + ∂tΨ
′
uvXt + v′Xt)dt + Ψ′uvdXt (81)

= (∂tφuv + ∂tΨ
′
uvXt + Ψ′uv(ζ(t)− LXt) + v′Xt)dt

+ Ψ′uvΣ(G0 +
∑
i

GiX
i
t)

1
2 dWt (82)

which must equal dZt/Zt − 1
2d〈Z〉t/Z

2
t which shows that dZt/Zt = Ψ′uvΣ(G0 +

∑
iGiX

i
t)

1
2 dWt so

we must have that

− 1
2Ψ′uvΣ(G0 +

∑
i

GiX
i
t)Σ
′Ψuv = ∂tφuv + Ψ′uvζ(t) +

∑
i

(∂tΨuv − L′Ψuv + v)iX
i
t . (83)

Equating this expression for every component Xi
t , and using the boundary conditions Ψuv(T, T ) =

u and φuv(T, T ) = 0, establishes (78) and (79).

11 Supplement B
A parametrization of K and M that ensures positive eigenvalues

The mapping

x 7→

 ex7 0 0
x6 x1 x2

x5 x∗ ex3 − x1

 , x∗ = (x2)−1(x1(ex3 − x1)− e2x3

1+ex4
)

creates matrices K (or riskneutral versions M of K) with positive real eigenvalues for all values
x ∈ R7 and it is invertible:

x1 = K22, x2 = K23, x3 = ln(T ), x4 = ln( T
2

4D − 1). x5 = K31, x6 = K21, x7 = ln(K11),

with T and D the trace and determinant of the matrix K without its first row and column. The
eigenvalues of K are λ1 = K11 and λ2,3 = 1

2T (1 ±
√

1− 4D/T 2). Our parametrization makes

λ1 = ex7 and λ2,3 = 1
2e
x3(1± 1/

√
1 + e−x4) so positive realness is guaranteed.

11Note that the ODEs are formulated in terms of time t; when implemented in terms of time to maturity τ = T−t,
a minus sign must be added to the right hand side of the first ODE.
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12 Supplement C
Implied volatilities and vega values for derivative instruments

Annualized implied volatilities σ for the different products follow from the equalities

Ct0(T,K) = St0Φ(d+)−KD(t0, T )Φ(d−), (84)

d± =
ln( S

KD(t0,T ) )± 1
2σ

2(T − t0)

σ
√
T − t0

, (85)

SWt0(Ta, Tb,K) =
(

(sab −K) Φ( sab−K
σ
√
Ta−t0

) + σ
√
Ta − t0 ϕ( sab−K

σ
√
Ta−t0

)
) Tb∑
Tk=Ta+1

D(t0, Tk),

sab =
D(t0, Ta)−D(t0, Tb)∑Tb

Tk=Ta+1D(t0, Tk)
, (86)

YICt0(T,K) =

T∑
Tk=t0+1

D(t0, Tk) ( FkΦ(dk+) − (1 +K)Φ(dk−)) , (87)

YIFt0(T,K) =

T∑
Tk=t0+1

D(t0, Tk) (−FkΦ(−dk+) + (1 +K)Φ(−dk−)) , (88)

dk± =
ln( Fk

1+K )± 1
2σ

2

σ
, Fk =

DR(t0, Tk)/D(t0, Tk)

DR(t0, Tk−1)/D(t0, Tk−1)
, (89)

and

ICt0(T,K) = D(t0, T )
(
FΦ(d̃+)− (1 +K)TΦ(d̃−)

)
(90)

IFt0(T,K) = D(t0, T )
(
−FΦ(−d̃+) + (1 +K)TΦ(−d̃−)

)
, (91)

d̃± =
ln( F

(1+K)T
)± 1

2σ
2(T − t0)

σ
√
T − t0

, F =
DR(t0, T )

D(t0, T )
, (92)

so the annualized vega values 0 equal

∂Ct0(T,K)

∂σ
= St0ϕ(d+)

√
T − t0, (93)

∂SWt0(Ta, Tb,K)

∂σ
= ϕ( sab−K

σ
√
Ta−t0

)
√
Ta − t0

Tb∑
Tk=Ta+1

D(t0, Tk), (94)

∂YICt0(T,K)

∂σ
=
∂YIFt0(T,K)

∂σ
=

T∑
Tk=t0+1

D(t0, Tk)Fkϕ(dk+), (95)

∂ICt0(T,K)

∂σ
=
∂IFt0(T,K)

∂σ
= DR(t0, T )ϕ(d̃+)

√
T − t0. (96)

The nominal and real bond prices used to calculate vega values are based on observed yields at
the point in time when derivatives prices were quoted, without the UFR. Notice that swaption
prices have been expressed in terms of volatilities that correspond to normal, instead of lognormal,
distributions.
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