

KEM-24 WP0 Literature review and compilation of input data/parameters for Groningen gas field modelling

Effect of pressure maintenance by fluid injection on seismic risk

172147_REP01_MEZK21_WP0Geol 01 | 30 September 2022 Ministerie van Economische Zaken en Klimaat

DynaFrax

Document Control

Document Information

Project Title	Effect of pressure maintenance by fluid injection on seismic risk
Document Title	KEM-24 WP0 Literature review and compilation of input data/parameters for Groningen gas field modelling
Fugro Project No.	172147
Fugro Document No.	172147_REP01_MEZK21_WP0Geol
Issue Number	01
Issue Status	Final report
Fugro Legal Entity	Fugro France
Issuing Office Address	115 avenue de la Capelado, 34160 Castries France

Client Information

Client	Ministerie van Economische Zaken en Klimaat
Client Address	Bezuidenhoutseweg 732594 AC The Hague

Document History

Issue	Date	Status	Comments on Content	Prepared By	Checked By	Approved By
01	25 March 21	For Review	Awaiting client comments	LB	CD	BW
02	30 September 22	Final		LB	CD	RS

Project Team

Initials	Name	Role
LB	Lucie BAUDOUY	Geologist
CD	Cédric DUVAIL	Senior Geologist
BW	Beau WHITNEY	Senior Geologist
RS	Ramon SECANELL	Senior Seismologist

Contents

2. LITERATURE REVIEW AND DATA COLLECTION. 2 3. REFERENCES 5 APPENDICES – INPUT DATA REQUIRED. 7 A.1. DATA REQUESTED BY DYNAFRAX UG. 7 A.2. DATA COMPILED BY FUGRO IN THE BIBLIOGRAPHY. 8 A.2.1. RESERVOIR ROCK MECHANICAL DATA 8 A.2.2. RESERVOIR ROCK SEISMIC DATA 15 A.2.3. RESERVOIR ROCK HYDRAULIC DATA 16 A.2.4. RESERVOIR FAULT MECHANICAL DATA 18 A.2.5. RESERVOIR FAULT MECHANICAL DATA 20 A.2.6. IN-SITU STRESS DATA 22 A.2.7. GRONINGEN FIELD PRODUCTION HISTORY DATA 25 A.2.8. IMPLEMENTATION OF RESERVOIR FAULTS IN 3D GRONINGEN MODEL 29	1.	INTRODUCTION	1
3. REFERENCES 5 APPENDICES – INPUT DATA REQUIRED 7 A.1. DATA REQUESTED BY DYNAFRAX UG 7 A.2. DATA COMPILED BY FUGRO IN THE BIBLIOGRAPHY 8 A.2.1. RESERVOIR ROCK MECHANICAL DATA 8 A.2.2. RESERVOIR ROCK SEISMIC DATA 15 A.2.3. RESERVOIR ROCK HYDRAULIC DATA 16 A.2.4. RESERVOIR FAULT MECHANICAL DATA 18 A.2.5. RESERVOIR FAULT MECHANICAL DATA 20 A.2.6. IN-SITU STRESS DATA 22 A.2.7. GRONINGEN FIELD PRODUCTION HISTORY DATA 25 A.2.8. IMPLEMENTATION OF RESERVOIR FAULTS IN 3D GRONINGEN MODEL 29	2.	LITERATURE REVIEW AND DATA COLLECTION	2
APPENDICES - INPUT DATA REQUIRED7A.1. DATA REQUESTED BY DYNAFRAX UG7A.2. DATA COMPILED BY FUGRO IN THE BIBLIOGRAPHY8A.2.1. RESERVOIR ROCK MECHANICAL DATA8A.2.2. RESERVOIR ROCK SEISMIC DATA15A.2.3. RESERVOIR ROCK HYDRAULIC DATA16A.2.4. RESERVOIR FAULT MECHANICAL DATA18A.2.5. RESERVOIR FAULT MECHANICAL DATA20A.2.6. IN-SITU STRESS DATA22A.2.7. GRONINGEN FIELD PRODUCTION HISTORY DATA25A.2.8. IMPLEMENTATION OF RESERVOIR FAULTS IN 3D GRONINGEN MODEL29	3.	REFERENCES	5
A.1. DATA REQUESTED BY DYNAFRAX UG	APP	NDICES – INPUT DATA REQUIRED	7
A.2. DATA COMPILED BY FUGRO IN THE BIBLIOGRAPHY	A.1.	DATA REQUESTED BY DYNAFRAX UG	7
A.2.1. RESERVOIR ROCK MECHANICAL DATA	A.2.	DATA COMPILED BY FUGRO IN THE BIBLIOGRAPHY	8
A.2.2. RESERVOIR ROCK SEISMIC DATA	A.2.1	. RESERVOIR ROCK MECHANICAL DATA	8
A.2.3. RESERVOIR ROCK HYDRAULIC DATA	A.2.2	. RESERVOIR ROCK SEISMIC DATA	. 15
A.2.4. RESERVOIR FAULT MECHANICAL DATA	A.2.3	. RESERVOIR ROCK HYDRAULIC DATA	. 16
A.2.5. RESERVOIR FAULT HYDRAULIC DATA	A.2.4	. RESERVOIR FAULT MECHANICAL DATA	. 18
A.2.6. IN-SITU STRESS DATA	A.2.5	. RESERVOIR FAULT HYDRAULIC DATA	. 20
A.2.7. GRONINGEN FIELD PRODUCTION HISTORY DATA	A.2.6	. IN-SITU STRESS DATA	. 22
A.2.8. IMPLEMENTATION OF RESERVOIR FAULTS IN 3D GRONINGEN MODEL	A.2.7	. GRONINGEN FIELD PRODUCTION HISTORY DATA	. 25
	A.2.8	. IMPLEMENTATION OF RESERVOIR FAULTS IN 3D GRONINGEN MODEL	. 29

1. Introduction

Fugro performed a literature review to complete a list of needed data for the fluid injection modelling (list provided by Dynafrax UG, in charge of the modelling). These data should be used to determine the values of entry parameters for the numerical simulations of the effect of pressure maintenance by fluid injection on seismic risk.

The list of data is focussing on the Groningen gas field area. Most part of the literature review integrate reports issued by NAM. Data issue from the NAM 3D Petrel Groningen model were also provided to Dynafrax UG.

A selection of a 10 x 10 km zone within the Groningen gas field was discussed with Dynafrax UG. This zone, with representative fault pattern and seismicity is used for the modelling. The geological and geotechnical parameters selected in this study will correspond mainly to this zone.

This report closes the work of the geological team regarding the WPO literature review. Only a brief list of the provided data is mentioned. The completed list and corresponding values and references is provided in appendices.

2. Literature review and data collection

Fugro performed a literature review to complete a list of data provided by Dynafrax UG in charge of the modelling. This list covers the following topics:

- Reservoir rock mechanical data.
- Reservoir rock seismic data.
- Reservoir rock hydraulic data.
- Reservoir fault mechanical data.
- Reservoir fault hydraulic data.
- In-situ stress data.
- Groningen field production history data.
- Implementation of reservoir faults in 3D Groningen model.

The completed list of required parameters with corresponding values and references is provided in appendices in the form of an informal internal document.

To facilitate the use of these data list, sources are referred using the pdf naming. This is not the conventional way of referencing, but it facilitates the hyperlink between the data and the source. Correlations between pdf names and references are provided in the table in the reference section of this report.

Data values indicated in the list correspond to "geological" information (from well / core / sample analysis). Values derived from or used in modelling studies are not referenced in the lists. They were defined by Dynafrax using expert criteria.

Additional data were also requested by Dynafrax UG. These data refer to:

- Groningen field in-situ temperature (depth at 3 km);
- Groningen field gas viscosity (for example, water at 20 °C is 1 cP = 1e-3 Pa.s);
- Groningen field gas bulk modulus (or compressibility) (for example, water at 20 °Cis 2.2 GPa).

Additional references were delivered to Dynafrax UG and added into the reference section of this report.

The provided parameters and data are focussing on the whole Groningen gas field. Discussion took place between Fugro and Dynafrax UG to define a 10 x 10 km zone within the Groningen gas field that will be used by the models (the whole Groningen gas field been too large to be covered by the models). This zone (black square in Figure 1), located in the North-West part of the gas field, was chosen with representative fault patterns and a representative seismic activity.

Fugro team accessed to the NAM 3D Petrel Groningen model. This model was preferred to the data available from the NLOG website (https://www.nlog.nl/en) to have accurate / up to date structural data input at the scale of the Groningen gas field. The NAM model was accessible in its Petrel format. A data format conversion work was necessary to integrate the fault geometry into the Dynafrax UG model (Figure 2). This work was performed at the scale of the 10 x 10 km zone only. After few tries and interaction between teams, fault planes were delivered in .dbf format to Dynafrax UG.

A thickness map at the scale of the Groningen gas field was also provided to Dynafrax UG. This map was processed from the base of the Zechstein Group surface and the base of the Upper-Rotliegend Group surface, both available from the NLOG website.

A seismicity catalogue was provided to Dynafrax UG. This catalogue, in a .txt file format, is the raw unprocessed catalogue from KNMI. It has events up to and including 2019. It includes all the recorded events. No declustering, magnitude homogenization, etc. has been performed. The data were accessed here: https://dataplatform.knmi.nl/open-data-info/index.html.

3. References

List of references used or compiled to complete the KEM24 project data requirements.

.pdf file name	Reference			
NAM_2015_Groningen 2015 Geomechanical Analysis.pdf	Suvrat P. Lele, Jorge L. Garzon, Sheng-Yuan Hsu, Nora L. DeDontney, Kevin H. Searles and Pablo F. Sanz (ExxonMobil Upstream Research Company, Spring, TX). (November 2015) Groningen 2015 Geomechanical Analysis. <i>NAM report, Editors Jan van Elk & Dirk Doornhof</i>			
NAM_2015_Dynamic Geomechanical Modelling Risk Fault Slip Groningen.pdf	Baker RDS - Romain Guises, Jean-Michel Embry and Colleen Barton (June 2015) Dynamic Geomechanical Modelling to Assess and Minimize the Risk for Fault Slip during Reservoir Depletion of the Groningen Field - Part 1: 1D Geomechanical Model - Part 2: 3D Geomechanical Model. <i>NAM report, Editors</i> <i>Jan van Elk & Dirk Doornhof</i>			
NAM_2017_Groningen Velocity Model 2017 - Groningen full elastic velocity model.pdf	NAM – Remco Romijn (September 2017) Groningen Velocity Model 2017 - Groningen full elastic velocity model September 2017. NAM report, Editors Jan van Elk & Dirk Doornhof			
NAM_Groningen Dynamic Model Update 2019.pdf	NAM - Quint de Zeeuw and Leendert Geurtsen (October 218) Groningen Dynamic Model Update 2019. NAM report, Editors Jan van Elk & Dirk Doornhof			
NAM_2016_Groningen Pressure Maintenance.pdf	Richard A Hofmann, Tjerk E Hassing, Peter Schutjens, Casper Buitendijk, Joop van der Steen and Jeanine CM van Leeuwen (2016) Groningen Pressure Maintenance (GPM) Study Progress Report, February 2016. NAM report, Editors Richard Hofmann, Jan van Elk Dirk Doornhof			
NAM_2019_Groningen Geomechanical Lab Testing Zeerijp-3A Compact Study.pdf	Aletta Filippidou (January 2019) Groningen Geomechanical Laboratory Testing of the Zeerijp-3A Compaction Study - An overview of the experimental compaction measurements. <i>NAM</i> <i>report, Editors Jan van Elk & Dirk Doornhof</i>			
Technical Addendum to the Winningsplan and suporting documents- Groningen 2013.pdf	Jan van Elk, Dirk Doornhof, Stephen Bourne, Steve Oates, Julian Bommer, Clemens Visser, Rob van Eijs and Peter van den Bogert (November 2013) Technical Addendum to the Winningsplan Groningen 2013 Subsidence, Induced Earthquakes and Seismic Hazard Analysis in the Groningen Field. NAM report, Editors Jan van Elk & Dirk Doornhof			
NAM_2015_Neotectonic Stresses in the Permian Slochteren Formation of the Groningen Field.pdf	Rob van Eijs (November 2015) Neotectonic Stresses in the Permian Slochteren Formation of the Groningen Field. NAM report, Editors Jan van Elk & Dirk Doornhof			
NAM_2017_Fault Interpretation of the Groningen area supra-Zechstein Overburden.pdf	NAM - Thomas Logeman (March 2017) Fault Interpretation of the Groningen area supra-Zechstein Overburden. NAM report, Editors Richard Hofmann, Jan van Elk Dirk Doornhof			
NAM_Groningen Dynamic Model Update 2018.pdf	NAM - Quint de Zeeuw and Leendert Geurtsen (June 2018) Groningen Dynamic Model Update 2018. NAM report, Editors Richard Hofmann, Jan van Elk Dirk Doornhof			
Jager & Visser_2017_geology_of_the_groningen_field.pdf	Jan de Jager and Clemens Visser (2017) Geology of the Groningen field – an overview. <i>Netherlands Journal of</i> <i>Geosciences — Geologie en Mijnbouw, 96 – 5, s3–s15, 2017</i>			
MSc_thesis_Eelco_Mechelse_External.pdf	Eelco Mechelse. (2017) The in-situ stress field in the Netherlands: Regional trends, local deviations and an analysis of the stress regimes in the northeast of the Netherlands <i>MSc</i> <i>Thesis – TU Delft, Delft University of Technology, Department of</i> <i>Geoscience & Engineering</i>			

Kortekaas & Jaarsma_2017_faults_in_the_groningen_field_usin g_seismic_attributes.pdf	Marloes Kortekaas and Bastiaan Jaarsma (2017) Improved definitio of faults in the Groningen fiel usingseismic attributes. <i>Netherlands Journal of Geosciences — Geologie en Mijnbouw,</i> 96 – 5, s71–s85, 2017
an-empirical-relationship-for-the-seismic- activity-rate-of-the-groningen-gas-field.pdf	Marc H.H. Hettema, Bastiaan Jaarsma, Barthold M. Schroot and Guido C.N. van Yperen (2017) An empirical relationship for the seismic activity rate of theGroningen gas feld. <i>Netherlands Journal of Geosciences</i> — <i>Geologie en Mijnbouw</i> , 96 – 5, s149–s161, 2017
geology_of_the_groningen_field_an_overview.pdf	1988. Physical properties of natural gases. Published by N.V. Nederlandse Gasunie. Book. P. 255
tle34060664.1.pdf	K. van Thienen-Visser and J. N. Breunese (2015) Induced seismicity of the Groningen gas field: History and recent developments. <i>THE LEADING EDGE - Special Section: Injection-</i> <i>induced seismicity</i>

Appendices – Input data required

A.1. Data requested by Dynafrax UG

This section presents the description of the data required for Groningen reservoir fluid injection induced seismicity modelling using Particle Flow Code

This document summarizes the plan/idea of hydro-mechanical coupled PFC modelling of fluid injection induced seismicity in Groningen reservoir, and also lists the data required for generation of Groningen reservoir geological model. DynaFrax asked the project partners to provide relevant data and references that might help model generation and planning the injection scenarios.

The final look of the 2D Groningen reservoir fault model should be similar to Figure 1, where the fault traces are modelled using PFC smooth joint contact model and the reservoir rock mass is modelled using PFC parallel bond (or flat joint contact) model. Such approach has been already tested and applied to TM (thermo-mechanical) coupled modelling for long-term safety assessment of an underground nuclear waste repository at Forsmark Sweden (2D modelling in Yoon et al. 2017; 3D modelling in Yoon & Zang 2019).

In order to construct the 2D Groningen reservoir fault model, data/information are required and they are listed below, in the following section A.2.

A.2. Data compiled by Fugro in the bibliography

Fugro completed the data tables provided by Dynafrax and presented in the following sections.

Most of the data requested has been completed, however some requested data remain outstanding and Dynafrax estimated these data using expert criteria.

A.2.1. Reservoir rock mechanical data

For most of these parameters, a detailed description is provided in section 2.3 of NAM (2015) Dynamic Geomechanical Modelling to Assess and Minimize the Risk for Fault Slip during Reservoir Depletion of the Groningen Field.

Composite diagrams of rock mechanical properties are provided in Appendix 2 "UCS and Rock Properties" of the previously mentioned report.

Properties (unit)	Value	Description				
	See estimated	"Across the reservoir formation, the Young's				
	values from EKL-12	modulus has been estimated using the				
	and ZPD-12 wells	relationship derived from laboratory tests of				
	(Figure 0.2)	young's modulus and porosity carried out in				
		the wells Eemskanaal-12 and Zuiderpolder-				
		12."				
Young's modulus (Pa)		Source: NAM (2015) Groningen 2015				
		Geomechanical Analysis				
	Porosity-Dependent	Values for stratigraphic intervals above and				
		below the reservoir are presented in Figure 0.1				
		below				
		Source: NAM (2015) Groningen 2015				
		Geomechanical Analysis				
	See values derived	Figure 0.5 - Details for the equations used to				
	from data from 13	calculate the Poisson ratio are presented in				
	wells across	section 2.3.2. of NAM (2015) Dynamic				
	Groningen field	Geomechanical Modelling to Assess and				
Poisson ratio (-)	(Figure 0.5)	Minimize the Risk for Fault Slip during Reservoir				
1 0133011 1atio (-)		Depletion of the Groningen Field				
	Porosity-Dependent	Values for stratigraphic intervals above and				
		below the reservoir are presented in Figure 0.1				
		Source: NAM (2015) Groningen 2015				
		Geomechanical Analysis				
Uniaxial compressive	9 – 10 MPa	"the average rock strength across the sand was				
strength (Pa)		estimated to be around 9 – 10 MPa." See				
		values from the Uiterburen-10 well in Figure				
		0.3.				

Uniaxial Compressive		Source: NAM (2015) Dynamic Geomechanical
Strength also known as		Modelling to Assess and Minimize the Risk for
Compressive Strength		Fault Slip during Reservoir Depletion of the
(UCS)		Groningen Field
	15 – 26 MPa	"the average rock strength for the Slochteren
		formation is around 15 – 26 MPa in the
		Loppersum area." Values from ZND-12 well.
		Source: NAM (2015) Dynamic Geomechanical
		Modelling to Assess and Minimize the Risk for
		Fault Slip during Reservoir Depletion of the
		Groningen Field
	See other values	Source: NAM (2015) Dynamic Geomechanical
	from acoustic logs	Modelling to Assess and Minimize the Risk for
	data from 13 wells	Fault Slip during Reservoir Depletion of the
	across Groningen	Groningen Field
	field (Figure 0.4)	
	See values from	Source: NAM (2015) Dynamic Geomechanical
	additional 3 wells	Modelling to Assess and Minimize the Risk for
	(FRB-8, ZND-12 and	Fault Slip during Reservoir Depletion of the
	ZDV-6) in Figure 0.6	Groningen Field
	Not defined at the	During the modelling tests, the permeability
	time of the	was defined using expert criteria and
	compilation of data	discussions with the internal and external
Tensile strength (Pa)	because the	experts.
rensile strength (r u)	parameters were	
	not found in the	
	bibliography	
	reviewed	
	See values from 3	Source: NAM (2015) Dynamic Geomechanical
Cohesion (Pa)	wells (FRB-8, ZND-	Modelling to Assess and Minimize the Risk for
	12 and ZDV-6) in	Fault Slip during Reservoir Depletion of the
	Figure 0.6	Groningen Field
	See values from 3	Source: NAM (2015) Dynamic Geomechanical
Internal friction angle	wells (FRB-8, ZND-	Modelling to Assess and Minimize the Risk for
(Deg.)	12 and ZDV-6) in	Fault Slip during Reservoir Depletion of the
	Figure 0.6	Groningen Field
	See values derived	Figure 0.5 - Details for the equations used to
	from data from 13	calculate the Poisson ratio are presented in
Friction coefficient (-)	wells across	section 2.3.2. of NAM (2015) Dynamic
	Groningen field	Geomechanical Modelling to Assess and
	(Figure 0.5)	Minimize the Risk for Fault Slip during Reservoir
		Depletion of the Groningen Field
	2460 kg/m ³	2.46 gr/cm ³ is the value provided in tables for
Density (kg/m ³)		the Rotliegend Formation.
1		1

	Source: NAM (2017) Groningen Velocity Model
	2017 – Groningen full elactic velocity model
	September 2017
Porosity-Depende	entValues for stratigraphic intervals above and
	below the reservoir are presented in Figure 0.1
	Source: NAM (2015) Groningen 2015
	Geomechanical Analysis

Table 1.1. Elastic material properties and densities for rock layers.

Fig. 1.2. Young's modulus vs. porosity of the reservoir rock.

Fig. 1.3. Poisson's ratio vs. porosity of the reservoir rock.

Well	TVD (m)	E (Mpa)	Porosit (%)
	2740	14704	0.4
	2744.7	12728	6.8
	2751.8	4441	18.7
	2760	6388	19.5
	2761.5	4652	18.9
	2770.4	2660	25.8
	2798.9	5457	20.9
	2800.3	4238	21.1
	2812.8	16039	16.3
	2813.7	6785	19.8
EKL-12	2715.3	10472	18
	2815.9	10202	18.5
	2815.9	9529	19
	2835.4	26581	7.8
	2840.6	16378	15.2
	2850.4	20616	12.9
	2859	12635	12.2
	2868.4	19253	8.4
	2872.6	25823	7.4
	2876.6	34813	7.4
	2900.9	24171	11.2
	2756	6856	19.6
ZPD-12	2756	6737	19.7
	2837.4	19642	12.1
	2837.4	15977	12.7

Figure 0.2 : (source: NAM (2015) Dynamic Geomechanical Modelling to Assess and Minimize the Risk for Fault Slip during Reservoir Depletion of the Groningen Field)

172147_REP01_MEZK21_WP0Geol 01 | KEM-24 WP0 Literature review and compilation of input data/parameters for Groningen gas field modelling Page 12 of 32

UGRO

147-11	UCS ROSLN - Sand			ROSLN - Sand			UCS Carboniferous - Shale			
weil	Pmin	P10	P50	P90	Pmin	P10	P50	P90		
BRW-2	15.89	20.68	25.12	29.13	11.16	12.78	19.87	23.53		
EKL-1	8.89	14.58	19.57	28.45		No co	verage			
HGZ-1	13.35	17.62	23.04	27.47	11.18	18.42	23.82	27.91		
KWR-1A	18.89	24.64	31.1	37.57	3.94	14.28	20.85	25.28		
OVS-1	8.9	14.78	19.25	30.06	12.7	14.96	15.97	18.45		
POS-1	9.47	12.5	16.63	30.82	14.33	14.85	16.5	17.17		
RDW-1	11.2	17.11	22.17	29.16	13.99	16.35	18.85	21.8		
SLO-3	9.13	11.24	17.08	30.33	6.44	12.24	16.43	18.99		
UHM-1A	12.02	17.84	23.6	31.69	No coverage					
ZND-1	2.63	14.23	18.85	30.26	No coverage					
ZPD-1	10.46	19.16	24.28	29.47	4.89	10.76	18.07	21.91		
ZRP-1	12.65	16.86	24.89	32.65	16.69	17.97	19.86	21.28		
ZWD-1	18.94	24.47	30.42	38.05	9.7	14.13	21.63	25.62		

D

î

590000

59500

580000

Table 8. UCS statistic summary for ROSLN and Carboniferous

Wells location map

Borgsweer (BRW-2), Eemskanaal (EKL-1) Hoogezand (HGZ-1), Kielwindeweer (KWR-1A) Overschild (OVS-1), Ten Post (POS-1) Rodewolt (RDW-1), Slochteren (SLO-3) Uithuizermeeden (UHM-1A), T Zand (ZND-1) Zuiderpolder (ZPD-1), Zeerijp (ZRP-1) Zuidwending (ZWD-1)

OLD

ROSLN = Rotliegend Group / Slochteren Formation

278434

-

The results of Pmin, P10, P50 and P90 indicate respectively the minimum, 10%, 50% and 90% of the rock strength, commonly presented in probabilistic analysis.

UGRO

Well	Internal Friction			Poisson Ratio			
	Halite	ROSLN	ROCLT/DC	Halite	ROCLT	ROSLN	DC
BRW-2	0.82	0.56	0.56	0.25	0.26	0.18	0.23
EKL-1	0.82	0.5	0.5	0.25	0.27	0.18	N/A
HGZ-1	0.82	0.45	0.5	0.25	0.22	0.18	0.21
KWR-1A	0.82	0.45	0.5	0.25	0.21	0.18	0.23
OVS-1	0.82	0.63	0.56	0.25	0.28	0.18	0.26
POS-1	0.82	0.53	0.56	0.25	0.27	0.18	0.26
RDW-1	0.82	0.53	0.56	0.25	0.24	0.18	0.23
SLO-3	0.82	0.53	0.5	0.25	0.29	0.18	0.26
UHM-1A	0.82	0.53	0.55	0.25	0.25	0.18	N/A
ZND-1	0.82	0.6	0.5	0.25	0.27	0.18	N/A
ZPD-1	0.82	0.53	0.55	0.25	0.27	0.18	0.25
ZRP-1	0.82	0.55	0.55	0.25	0.26	0.18	0.26
ZWD-1	0.82	0.53	0.6	0.25	0.24	0.18	0.23

Table 9. Internal Friction and Poisson Ratio values for Halite, ROCLT, ROSLN and DC using equation 9, 10 and 11.

Figure 0.5 : (source: NAM (2015) Dynamic Geomechanical Modelling to Assess and Minimize the Risk for Fault Slip during Reservoir Depletion of the Groningen Field)

ROSLN = Rotliegend Group / Slochteren Formation; ROCLT = Rotliegend Group / Ten Boer Member; DC = Carboniferous.

See wells location map in Figure C.

Well	Depth MD (m)	UCS (Mpa)	Internal Friction (deg)	Cohesion (MPa)	Comments	Tested depth
FRB-8	2756.84 - 2757.35	21.4	19.33	7.59	Interval 1	Reservoir
	2760.95 - 2761.16	5.44	31.38	1.53	Interval 2	Reservoir
	2756.81 - 2761.16	16.95	23.73	5.53	Complete Interval	Reservoir
ZND-12	2816.47 - 2818.85	5.96	44.42	1.25	Interval 1	Reservoir
	2819.10 - 2820.33	24.36	22.73	8.1	Interval 2	Reservoir
	2816.47 - 2820.33	14.84	29.39	4.34	Complete Interval	Reservoir
ZDV-6	3795.96 - 3796.26	14.94	35.24	3.87	Interval 1	Reservoir
	3796.38 - 3797.22	14.41	30.61	4.11	Interval 2	Reservoir
	3795.96 - 3797.22	15.3	32.05	4.24	Complete Interval	Reservoir

Figure 0.6 : (source: NAM (2015) Dynamic Geomechanical Modelling to Assess and Minimize the Risk for Fault Slip during Reservoir Depletion of the Groningen Field)

Properties (unit)	Value	Description
Properties (unit) P-wave velocity (km/s)	3.9 km/s	Description "The reservoir (between top Rotliegend and top Carboniferous) has an interval P wave velocity that loosely correlates with the thickness of the reservoir. This is concluded from considering 344 sonic logs. The thinner the reservoir, the higher the velocities are. But also inside the reservoir, the velocities can vary from top to bottom: higher at the top and bottom of the reservoir, lower in the middle part. The average velocity in the reservoir and over the entire area is roughly 3900 m/s." Source: NAM (2017) Groningen
S-wave velocity (km/s)	2.286 km/s	Velocity Model 2017 – Groningen full elactic velocity model September 2017 Vs = 2286 m/s: value provided for the Rotliegend Formation. Source: NAM (2017) Groningen Velocity Model 2017 – Groningen full elactic velocity
Seismic quality factor, Q (-)	200	200 is the value provided for the Rotliegend Formation. The Q values are best guess estimates, based on work by several groups (NAM, Shell, KNMI, Norsar, J. Bommer). Source: NAM (2017) Groningen Velocity Model 2017 – Groningen full elactic velocity model September 2017

A.2.2. Reservoir rock seismic data

Properties (unit)	Value	Description
	1 to 1000 mD	"The reservoir quality of Rotliegend sediments from the Groningen field has been measured on thousands of core plugs. Porosity typically ranges from 10 to 24% and permeability from 1 to1000 mD, but lower and higher values have also been measured (Visser, 2012)." Source: Jager and Visser (2017) – Geology of the Groningen field – an overview
Permeability (m²)	0.01 mD < k _h < 1 mD	Horizontal permeability: "Based on the core data, a range in permeability values within the Carboniferous porosity range deemed acceptable is: 0.01 mD < k_h < 1 mD. The high case value was selected relatively aggressively to include a scenario that
Note the range of values found in the literature does not look coherent.	0.01 < kv/kh multiplier < 1	will drain the full Carboniferous." Vertical permeability: "The vertical permeability in the Carboniferous is implemented using a k_v/k_h multiplier, ranging from: 0.01 < kv/kh multiplier < 1. No extremely low values are used since the Carboniferous grid is concordant with the Slochteren grid, whereas in reality the angular unconformity could locally give some more vertical connectivity. <i>Source: NAM (2018) Groningen</i> <i>Dynamic Model Update 2019</i>
	3 D	"The main reservoir is the Lower Permian, Rotliegend Sloch-teren mainly aeoliean sandstone, which has good properties with porosities in the range of 15-20% and permeabilities of up to 3D." Source: NAM (2016) Groningen Pressure Maintenance (GPM) Study
Biot coefficient	Ranged from 0.7 to 0.9 See graph Figure 0.1	"The Biot coefficient is generally stress insensitive and ranged from 0.7 – 0.9 for most samples. A few high porosity samples displayed decreasing Biot

A.2.3. Reservoir rock hydraulic data

		coefficients with stress and were also much lower, with value range 0.4 – 0.7. Source: NAM (2019) Groningen Geomechanical Laboratory Testing of the Zeerijp-3A Compaction study
Porosit	y-Dependent	Values for stratigraphic intervals above and below the reservoir are presented in Figure 0.1 Source: NAM (2015) Groningen 2015 Geomechanical Analysis

A.2.4. Reservoir fault mechanical data

Information regarding faults is found in Chapter 9 ("The role of faults" of: NAM (2013) Technical Addendum to the Winningsplan Groningen 2013 – Subsidence, induced Earthquakes and Seismic Hazard Analysis in the Groningen Field(.

Properties (unit)	Value	Description
Young's modulus (Pa)	Not defined at the time of the compilation of data because the parameters were not found in the bibliography reviewed	During the modelling tests, the permeability was defined using expert criteria and discussions with the internal and external experts.
Poisson's ratio (-)	Not defined at the time of the compilation of data because the parameters were not found in the bibliography reviewed	During the modelling tests, the permeability was defined using expert criteria and discussions with the internal and external experts.
Normal stiffness (Pa/m)	Not defined at the time of the compilation of data because the parameters were not found in the bibliography reviewed	During the modelling tests, the permeability was defined using expert criteria and discussions with the internal and external experts.
Shear stiffness (Pa/m)	Not defined at the time of the compilation of data because the parameters were not found in the bibliography reviewed	During the modelling tests, the permeability was defined using expert criteria and discussions with the internal and external experts.
Tensile strength (Pa)	Not defined at the time of the compilation of data because the parameters were not found in the bibliography reviewed	During the modelling tests, the permeability was defined using expert criteria and discussions with the internal and external experts.
Cohesion (Pa)	7 MPa	" the analysis show a better consistency with the recorded seismic events when using a cohesion of 7 MPa and a sliding friction angle of 13° (sliding friction coefficient = 0.23)" Source: NAM (2015) Dynamic Geomechanical Modelling to Assess and Minimize the Risk for Fault Slip during Reservoir Depletion of the Groningen Field

	Not defined at the time of the	During the modelling tests, the
	compliation of data because	permeability was defined using
Dilation angle (Deg.)	the parameters were not found	expert criteria and discussions
	in the bibliography reviewed	with the internal and external
		experts.
	0.23	" the analysis shows a better
		consistency with the recorded
		seismic events when using a
		cohesion of 7 MPa and a sliding
		friction angle of 13° (sliding
Friction coefficient (-)		friction coefficient = 0.23)"
		Source: NAM (2015) Dynamic
		Geomechanical Modelling to
		Assess and Minimize the Risk for
		Fault Slip during Reservoir
		Depletion of the Groningen Field

A.2.5. Reservoir fault hydraulic data

Properties (unit)	Value	Description
Permeability (m²)	Not defined at the time of the compilation of data because the parameters were not found in the bibliography reviewed	During the modelling tests, the permeability was defined using expert criteria and discussions with the internal and external experts.
Fault seal factor		See Fig. 2 "In total 48 fault seal factors were assigned, out of over 600 faults in the dynamic grid. Figure 7-12 (Figure 0.1) provides an overview of the faults which have fault seal factors assigned in the final V6 model, chapter 8 provides a more detailed overview per region. It is recommended to review whether the deterministic choices made can be captured in a more holistic framework." <i>Source: NAM (2018) Groningen Dynamic</i> <i>Model Update 2019</i>

A.2.6. In-situ stress data

Newly, some values listed in the following table are not provided and they were defined by Dynafrax using expert criteria (coming from similar projects). For the stress field to be used as initial model conditions, the following parameters are needed:

- Maximum horizontal stress (SH) magnitude & orientation at the reservoir depth: The predicted SH gradient in Groningen varies between 1.73 and 1.82 SG (500 – 560 bars) at the top of the Slochteren formation. The orientation of SH is following and average azimuth between N156°E - N160°E ± 10°. (source: NAM (2015) Dynamic Geomechanical Modelling to Assess and Minimize the Risk for Fault Slip during Reservoir Depletion of the Groningen Field)
- Minimum horizontal stress (Sh) magnitude & orientation at the reservoir depth
 Sh = 1.54 and 1.67 SG (420-520 bars) at the top of the reservoir.
 The orientation is 90° from the SH so N066°E N070°E ± 10°.
 (source: NAM (2015) Dynamic Geomechanical Modelling to Assess and Minimize the Risk for
 Fault Slip during Reservoir Depletion of the Groningen Field)
- Vertical stress (Sv) magnitude at the reservoir depth
 Sv = Smax = between 2.19 and 2.35 SG at a reference level of 3000m TVDGL (ground level). This difference in vertical stress gradients is mainly caused by Zechstein salt thickness variations.

(source: NAM (2015) Neotectonic Stresses in the Permian Slochteren Formation of the Groningen Field).

• If available, stress magnitudes as a function of depth, is recommended (e.g. see Fig.3, from Mechelse 2017)

See Figure 0.1 and Figure 0.2 below.

Figure 22. Summary of the principal stress magnitudes and the pore pressure as function of depth (example from well POS-1). S_v in dark red, S_{hmin} in dashed green, S_{Hmax} in dashed red and pore pressure in blue. Here is also displayed the MW used to drill this well (bright green) and the formation pressure measurements.

Figure 0.1: (source: NAM (2015) Dynamic Geomechanical Modelling to Assess and Minimize the Risk for Fault Slip during Reservoir Depletion of the Groningen Field)

Figure 1 Vertical stress gradients (SG) for thirteen wells in the Groningen area. The overburden gradient varies from 2.19-2.35 SG at 3000m TVDGL (from Yan and Guises, 2013). To the right a map of the Groningen field showing the locations of the wells.

Figure 0.2 : (source: NAM (2015) Neotectonic Stresses in the Permian Slochteren Formation of the Groningen Field).

A.2.7. Groningen field production history data

For WPi (Modelling of production-induced seismicity in Groningen gas field), we need information of:

- Initial reservoir formation pressure and its spatial distribution
 - "Initial reservoir pressures of 346 bar (at reference depth of 2875 m) were hydrostatic and virtually constant across the field. The Groningen field is produced primarily under gas expansion drive (Burkitov et al., 2016), which has led to a very significant pressure reduction. Extensive aquifers are connected to the field, which could possibly provide some pressure support. In addition, volume reduction as a result of compaction also gives minor pressure support. In the first decade of production, most gas was produced from clusters in the southern half of the field, leading to an imbalance in pressures, with most pressure reduction from the northern sectors of the field was preferred to reduce these imbalances. Since 2014, production caps have been imposed on some of the northern clusters, which have led again to an increase in the imbalance. Reservoir pressures in 2015 mainly range from some 65 bar in the south to 85–90 bar in the north. The highest pressures are currently measured in the southwestern periphery." (source: de Jager and Visser (2017) Geology of the Groningen field an overview).
 - Chapter 8 of *NAM (2018 Groningen Dynamic Model Update 2019)* provides a detailed overview per region of the pressure.

The source of data is: NAM (2018) Groningen Dynamic Model Update 2019

Production locations

"The Groningen field is currently (spring 2016) being produced by means of 258 wells at 22 production locations. Treatment facilities are present at twenty of these production locations, and the gas of the other two well sites is transported by pipeline to the nearest gas-treatment location. There are also 28 observation wells for reservoir management and a number of injection wells to inject the produced water back into the reservoir."

The source of data is: NLOG website: <u>https://www.nlog.nl/en/groningen-gasfield</u>). Location of observations wells and clusters is provided by Figure 0.1.

Production rates

In view of the increased induced seismicity, the volume of gas to be produced from the Groningen gas field has, since 2014, been determined by the Minister of Economic Affairs in a decree on the Groningen production plan. For the 2015-2016 gas year, the maximum production has been set at 27 billion Nm3. The preliminary decree of July 2016 proposed a further reduction to 24 billion Nm3 per year for the next five gas years, with extra gas being allowed to be produced only in the event of very cold winters in the Netherlands. The Dutch government also publishes news on the decision-making process on its website (<u>https://www.rijksoverheid.nl/</u>). The following table lists the various production-limiting measures taken by the Minister of Economic Affairs since 2014

The source of data is: NLOG website: <u>https://www.nlog.nl/en/groningen-gasfield</u>.

Date	Reduction measure by the Minister of Economic Affairs
17 January 2014	 A maximum production of 42,5 bcm for 2014 Maximum 3 bcm for the Loppersum clusters (Leermens, Overschild, de Paauwen, Ten Post, Het Zand)
December 2014	 A maximum production of 39,4 bcm for 2015 Maximum 3 bcm for the Loppersum clusters (Leermens, Overschild, de Paauwen, Ten Post, Het Zand) Maximum 9,9 bcm for the clusters close to Hoogezand-Sappemeer (Kooipolder, Slochteren, Zuiderveen, Spitsbergen, Tusschenklappen, Froombosch, Sappemeer) for the period 1st October 2015 until 30th September 2016 Maximum 2 bcm for the Eemskanaal cluster
February 2015	Maximum production of 16,5 bcm for the first six months of 2015
14 April 2015	Limit production from Loppersum clusters if necessary for the security of supply
23 June 2015	Maximum production of 13,5 bcm for the last six months of 2015
18 November 2015	Maximum production of 27 bcm for the gas year 2015/2016
24 June 2016	Maximum production of 24bcm for the coming 5 gas years (provisional decision)

Seismicity catalogues (hypocenter depth, location, magnitude)

The catalogue, included as an accompanying txt file [knmi_cat_with_date_time.txt], is the raw unprocessed catalogue from KNMI. It has events up to and including 2019. It includes all of the recorded events. No declustering, magnitude homogenization, etc. has been performed.

The data were accessed here: <u>https://dataplatform.knmi.nl/open-data-info/index.html</u>. Area of catalogue shown on Figure 0.2.

Figure 0.2: KNMI seismicity catalogue

A.2.8. Implementation of reservoir faults in 3D Groningen model

For WP3 (Modelling of gas injection using TOUGH) and WP4 (Modelling of fluid injection induced seismicity in PFC3D model), the aim is to investigate near-wellbore induced seismicity. Therefore, more detailed 3D fault structure will be implemented in the model. In order to do so, fault structure data (e.g. see Fig.4) are required and should be pre-processed. We suggest the format of such fault structure data be dxf. The source of data are the following:

- NAM (2013) Technical Addendum to the Winningsplan Groningen 2013 Subsidence, Induced Earthquakes and Seismic Hazard Analysis in the Groningen Field: It is indicated that "More than 1700 faults have been interpreted in the Groningen field, of which 707 have been used to construct the static and dynamic reservoir model. Currently, geomechanical evaluation of all 707 faults in a single geomechanical model cannot be conducted realistically. Therefore, simplifications are incorporated in ongoing 3D modeling efforts, and dedicated studies are being conducted to reduce the modeling uncertainties").
- NAM (2017 Fault interpretation of the Groningen area supra-Zechstein Overburden: It is indicated that: "The fault interpretation project is stored in the following location: <u>\\europe.shell.com\tcs\ams\ui.nam\data\petrel03\epe_land\groningen\nl_groningen\pet</u> <u>rel final\2016 GFR Thomas Logeman Structural OverburdenFaultInterpretation EP20170</u> <u>3226971</u> ", although the provided link seems to be no longer active.

Figure 1. Example of 2D geological fault map of Groningen. PFC2D model with similar level of fault complexity will be generated using the Groningen fault map.

Figure **2**. Fault seal factors in the Groningen V5 dynamic model (warm colors indicate more open faults, cold colors indicate more sealing faults) (from NAM, Groningen Dynamic Model Update 2018).

Figure 3. Stress profiles and pore pressure as function of depth (from Mechelse 2017).

Figure 4. Example of 3D fault structure (from Kortekaas & Jaarsma 2017).

